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Abstract
Creation of scalar massless particles in two-dimensional Minkowski space
time—as predicted by the dynamical Casimir effect—is studied for the case
of a semitransparent mirror initially at rest, then accelerating for some finite
time, along a specified trajectory, and finally moving with constant velocity.
When the reflection and transmission coefficients are those in the model
proposed by Barton, Calogeracos and Nicolaevici [r(w) = −iα/(ω + iα) and
s(w) = ω/(ω + iα), with α � 0], the Bogoliubov coefficients on the back side
of the mirror can be computed exactly. This allows us to prove that, when α

is very large (case of an ideal, perfectly reflecting mirror) a thermal emission
of scalar massless particles obeying Bose–Einstein statistics is radiated from
the mirror (a black body radiation), in accordance with previous results in the
literature. However, when α is finite (semitransparent mirror, a physically
realistic situation) the striking result is obtained that the thermal emission of
scalar massless particles obeys Fermi–Dirac statistics. Possible consequences
of this result are envisaged.

PACS numbers: 03.70.+k, 04.62.+v, 42.50.Lc, 11.10.Ef

1. Introduction

The Davies–Fulling model [1, 2] describes the creation of scalar massless particles by a
moving perfect mirror following a prescribed trajectory. This phenomenon is also termed as
the dynamical Casimir effect. Recently, the authors of the present communication introduced
a Hamiltonian formulation in order to address some problems associated with the physical
description of this effect at any time while the mirror is moving [3]; in particular, of the
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regularization procedure, which turns out to be decisive for the correct derivation of physically
meaningful quantities. A basic difference with previous results was that the motion force
derived within the new approach contains a reactive term—proportional to the mirror’s
acceleration. This term is of the essence in order to obtain particles with a positive energy
all the time while the oscillation of the mirror takes place, and always satisfies the energy
conservation law. Such a result followed essentially from the introduction of physically
realistic conditions, e.g. a partially transmitting mirror, which becomes transparent to very high
frequencies.

Here we will study a different aspect of the introduction of physical, semitransparent
mirrors, namely the particle spectrum produced—in the conditions of the Fulling–Davies
effect—by a mirror of this sort which is initially at rest, then accelerates during a large enough
(but finite) time span, u0, along the trajectory defined in [4, 5] (known to lead to a Planck
spectrum):

v = 1

k
(1 − e−ku) (1)

(in light-like coordinates, where k is some frequency), and finally, for u � u0, is left alone
moving with constant velocity in an inertial trajectory.

Our interest will be to calculate the radiation emitted by the mirror from its back (right)
side. As is well known, a perfect mirror that follows this kind of trajectory produces a thermal
emission of scalar massless particles obeying Bose–Einstein statistics. More precisely, for
1 � ω′/k � eku0 and 1 � ω′/ω � eku0 (with ω′ the frequency of an ingoing and ω of an
outgoing particle, respectively), the square of the β-Bogoliubov coefficient satisfies [6–8]∣∣βR,R

ω,ω′
∣∣2 ≡ ∣∣(φout

ω,R

∗;φin
ω′,R

)∣∣2 ∼= 1

2πω′k
(e2πω/k − 1)−1, (2)

where this square of the β-Bogoliubov coefficient gives the average number of produced
particles in the ω mode per unit of frequency. That is, the average number of produced
particles in the ω mode, denoted N ω, is given by Nω = ∫ ∞

0 dω′∣∣βR,R
ω,ω′

∣∣2
.

Here ω′ denotes the frequency of an ingoing particle (a particle coming from the past
infinity), and ω is the frequency of the outgoing one (particle going to the future infinity). Note
that for the trajectory (1) the ingoing mode suffers, after the scattering, a very high redshift,
for this reason, in order to obtain (2), we need the above conditions (see for details [8], and
section 3.1).

Turning to the case of a partially reflecting mirror—in which we will be mainly interested
in this communication—in order to obtain the radiation on the right-hand side (rhs) of the
mirror, we also need to calculate the corresponding Bogoliubov coefficient, in this case:
β

R,L
ω,ω′ ≡ (

φout
ω,R

∗;φin
ω′,L

)∗
.

We thus first obtain the ‘in’ modes on the rhs of the mirror when the reflection and
transmission coefficients are r(w) = −iα

ω+iα and s(w) = ω
ω+iα , with α � 0, that is, when the

Lagrangian density is given by [9–11]

L = 1
2 [(∂tφ)2 − (∂zφ)2] − α

√
1 − ġ2(t)φ2δ(z − g(t)), (3)

where z = g(t) is the trajectory in the (t, z) coordinates.

2. Main results

The main results of this communication, some of them quite remarkable, are the following
(for 1 � ω′/k � eku0 and 1 � ω′/ω � eku0 ).
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(1) In the perfectly reflecting case, i.e., when ω′ � α, we obtain∣∣βR,R
ω,ω′

∣∣2 ∼= 1

2πω′k
(e2πω/k − 1)−1,

∣∣βR,L
ω,ω′

∣∣2 ∼= 0, (4)

that is, a thermal radiation of massless particles obeying Bose–Einstein statistics arises.
(2) In the perfectly transparent case, i.e.,when α ∼= 0, we have∣∣βR,R

ω,ω′
∣∣2 ∼= 0,

∣∣βR,L
ω,ω′

∣∣2 ∼= 0. (5)

In other words, there is no particle production.
(3) In the physically more realistic case of a partially transmitting mirror (transparent to high

enough frequencies [3]), i.e., when α � ω′, what we obtain is∣∣βR,R
ω,ω′

∣∣2 ∼= 1

2πωk

(
α

ω′

)2

(e2πω/k + 1)−1,
∣∣βR,L

ω,ω′
∣∣2 ∼ 1

ωω′O
[(

α

ω′

)2
]

. (6)

And, since
∣∣βR,L

ω,ω′
∣∣ � ∣∣βR,R

ω,ω′
∣∣, we conclude quite surprisingly that a semitransparent mirror

emits a thermal radiation of scalar massless particles obeying Fermi–Dirac statistics.

Here it is important to emphasize that the word ‘statistics’ refers to the β-Bogoliubov
coefficient characterizing the spectrum of the radiated particles and not to the algebra obeyed
by the creation and annihilation operators that always satisfy the canonical anti-commutation
relations. That is, the original particles are bosons, but the spectrum of the radiated emission
corresponds to fermionic ones. This could have some bearing on the local algebraic description
of quantum fields [12].

Given the novelty and potential importance of this result, we thought we should devote
the rest of the communication to provide a rigorous and systematic proof of the same. Also,
we will give hints to possible interesting consequences and applications of our finding.

3. Proof of the results

3.1. Perfectly reflecting, moving mirror

Consider a massless scalar field φ in two-dimensional Minkowski space time. Assume that the
mirror trajectory is C1 (once continuously differentiable), and that it has the following form,
in the light-like coordinates u ≡ t − z and v ≡ t + z,

v = V (u) ≡




u, if u � 0,

1

k
(1 − e−ku), if 0 � u � u0,

V (u0) + A(u − u0), if u � u0,

(7)

with A = e−ku0 . We also assume that u0 � 1. Note that this trajectory can be written under
the following form, too

u = U(v) ≡




v, if v � 0,

−1

k
ln(1 − kv), if 0 � v � v0,

U(v0) + A−1(v − v0), if v � v0.

(8)

For a perfectly reflecting mirror, the set of ‘in’ and ‘out’ mode functions on the rhs of the
mirror is [13]

φin
ω,R(u, v) = 1√

4π |ω| (e
−iωv − e−iωV (u))θ(v − V (u)),

φout
ω,L(u, v) = 1√

4π |ω| (e
−iωu − e−iωU(v))θ(v − V (u)).

(9)

3
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Our main aim now is to calculate the Bogoliubov beta coefficient

β
R,R
ω,ω′ ≡ (

φout
ω,R

∗;φin
ω′,R

)∗
, ω, ω′ > 0, (10)

where the parenthesis on the rhs denotes the usual product for scalar fields [14].
In order to compute this coefficient we choose the right null future infinity domain J +

R ;
since the trajectory is C1, we have

β
R,R
ω,ω′ = 2i

∫
R

duφout
ω,R∂uφ

in
ω′,R = 1

2π i
√

ωω′
ω′

ω + ω′ − 1

2π i
√

ωω′ e−iωu0 e−iω′V (u0)
ω′A

ω + ω′A

− 1

2πk

√
ω′/ω

∫ 1−A

0
ds(1 − s)iω/k e−isω′/k. (11)

If we do the approximation 1 � ω′/k � A−1 and 1 � ω′/ω � A−1, we arrive at

β
R,R
ω,ω′ ∼= 1

2π i
√

ωω′ − 1

2πk

√
ω′/ω

∫ 1−A

0
ds(1 − s)iω/k e−isω′/k. (12)

To obtain an explicit expression for the second term on the rhs, we consider the domain

D ≡ {z ∈ C|Re z ∈ [0, 1 − A], Im z ∈ [−ε, 0], k/ω′ � ε � 1}
and, going through the same steps as in [8], we easily obtain that

β
R,R
ω,ω′ ∼= 1

2π i
√

ωω′ e−iω′/k

(
ik

ω′

)iω/k


 (1 + iω/k) . (13)

Finally, using |
 (1 + iω/k) |2 = πω/k

sinh(πω/k)
(see [15]), we obtain the announced result, for a

perfectly reflecting mirror, that∣∣βR,R
ω,ω′

∣∣2 ∼= 1

2πω′k
(e2πω/k − 1)−1. (14)

3.2. Partially reflecting moving mirror

First, we search for the co-moving coordinates (τ, ρ), that is, the coordinates for which the
mirror is at rest, τ being the proper time of the mirror, and we take ρ such that its trajectory is
given by ρ = 0. Introducing the light-like coordinates (ū, v̄), defined as

ū ≡ τ − ρ, v̄ ≡ τ + ρ, (15)

we will calculate the mirror’s trajectory in the coordinates (ū, v̄). Along this trajectory, the
length element obeys the identity [16]

dτ 2 = dū2 = dv̄2 = V ′(u) du2 = U ′(v) dv2. (16)

Then, an easy calculation yields the relations

ū(u) ≡




u, if u � 0,

2

k

(
1 − e−k u

2
)
, if 0 � u � u0,

ū(u0) +
√

A(u − u0), if u � u0,

(17)

and

v̄(v) ≡




v, if v � 0,

2

k
(1 − √

1 − kv) if 0 � v � v0,

v̄(v0) + A− 1
2 (v − v0), if v � v0.

(18)

4
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When the mirror is at rest, scattering is described by the S-matrix (see [3, 17] for more
details)

S(ω) =
(

s(ω) r(ω) e−2iωL

r(ω) e2iωL s(ω)

)
, (19)

where x = L is the position of the mirror. This S matrix is taken to be real in the temporal
domain, causal, unitary and the identity at high frequencies [3]. Correspondingly, the ‘in’
modes in the coordinates (ū, v̄) are (see also [9])

gin
ω,R(ū, v̄) = 1√

4π |ω| s(ω) e−iωv̄θ(ū − v̄) +
1√

4π |ω| (e
−iωv̄ + r(ω) e−iωū)θ(v̄ − ū),

gin
ω,L(ū, v̄) = 1√

4π |ω| (e
−iωū + r(ω) e−iωv̄)θ(ū − v̄) +

1√
4π |ω| s(ω) e−iωūθ(v̄ − ū).

(20)

Note that the ‘in’ modes in the coordinates (u, v), namely φin, are defined in the right null past
infinity domain J −

R by

φin
ω,R = 1√

4π |ω| e−iωv, φin
ω,L = 0, (21)

and in the left null past infinity domain J −
L by

φin
ω,R = 0, φin

ω,L = 1√
4π |ω| e−iωu. (22)

From this definition, it is clear that ḡin
ω,k(u, v) ≡ gin

ω,k(ū(u), v̄(v)), with k = R,L, are not
such modes. However, the modes ḡin

ω,k constitute in fact an orthonormal basis of the space of
solutions to our problem. Consequently, if we use the fact that ḡin

−ω,k = ḡin∗
ω,k , we obtain the

following relation

φin
ω,k =

∫
R

dω′χ(ω′)
(
ḡin

ω′,k;φin
ω,k

)
ḡin

ω′,k, (23)

with χ(ω′) the sign function. To be remarked is the fact that equation (23) is to be interpreted
as follows:

φin
ω,k = lim

λ→∞

∫
R

dω′χ(ω′)
(
ḡin

ω′,k;φin
ω,k

)
ḡin

ω′,kFλ(ω
′), (24)

where Fλ(ω
′) is a frequency cut-off, for instance λ2

λ2+(ω′)2 .
To calculate explicitly the ‘in’ modes, we choose the coefficients:

r(w) = −iα

ω + iα
, s(w) = ω

ω + iα
, (25)

with α � 0. In this case, on the rhs of the mirror we obtain

φin
ω,R(u, v) = 1√

4π |ω| e−iωv + φrefl
ω,R(u), φin

ω,L(u, v) = φtrans
ω,L (u), (26)

5
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where

φrefl
ω,R(u) =




1√
4π |ω|

−iα

ω + iα
e−iωV (u), u � 0,

1√
4π |ω|

−iα

ω + iα
e−αū(u) − 2α

k
√

4π |ω| e−i ω
k

∫ k
2 ū(u)

0

ds e
iω
k (s+1− k

2 ū(u))
2

e− 2αs
k , 0 � u � u0,

1√
4π |ω|

−iα

ω + iα
e−αū(u) − 1√

4π |ω|
iα√

Aω + iα

× [e−iωV (u) − e−iωV (u0) e−α(ū(u)−ū(u0))]

− 2α

k
√

4π |ω| e−i ω
k e−α(ū(u)−ū(u0))

∫ k
2 ū(u0)

0

ds e
iω
k (s+1− k

2 ū(u0))
2

e− 2αs
k , u � u0,

(27)

and

φtrans
ω,L (u) =




1√
4π |ω|

ω

ω + iα
e−iωV (u), u � 0

1√
4π |ω| e−iωu +

1√
4π |ω|

−iα

ω + iα
e−αū(u) − 2α

k
√

4π |ω|∫ k
2 ū(u)

0
ds

(
s + 1 − k

2
ū(u)

)2iω/k

e− 2αs
k , 0 � u � u0

1√
4π |ω|

−iα

ω + iα
e−αū(u) +

1√
4π |ω|

e−iωu0

ω + iα
√

A[
ω e−i ω√

A
(ū(u)−ū(u0)) + i α

√
A e−α(ū(u)−ū(u0))

]
− 2α

k
√

4π |ω| e−α(ū(u)−ū(u0))

∫ k
2 ū(u0)

0
ds

(
s + 1 − k

2
ū(u0)

)2iω/k

e− 2αs
k , u � u0.

(28)

Note that (as already advanced) in the case of perfect reflection, that is, when α → ∞, we
obtain

φrefl
ω,R(u) → − 1√

4π |ω| e−iωV (u), φtrans
ω,L (u) → 0, (29)

and when the mirror is transparent, i.e. α → 0, we obtain

φrefl
ω,R(u) → 0, φtrans

ω,L (u) → 1√
4π |ω| e−iωu. (30)

We are interested in the particle production on the rhs of the mirror, for this reason we
must now obtain, for ω,ω′ > 0,

β
R,R
ω,ω′ = (

φout
ω,R

∗;φrefl
ω′,R

)∗
, β

R,L
ω,ω′ = (

φout
ω,R

∗;φtrans
ω′,L

)∗
. (31)

6
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We start by calculating β
R,R
ω,ω′ , with the result

β
R,R
ω,ω′ ∼= 1

2π
√

ωω′
α

ω′ + iα

[
1 − α

k

∫ 1

A

dx x iω/k− 1
2 e− 2α

k
(1−√

x)

]

+
α

2πki
√

ωω′ e−iω′/k

∫ 1

A

dx x iω/k− 1
2 ei ω′

k
x

[
1 − 2α

k

∫ 1−√
x

0
ds ei ω′

k
(s2+2s

√
x) e− 2αs

k

]
.

(32)

Now, provided that ω′ � α, then equation (32) turns into equation (12). Consequently, we
precisely obtain the same behavior as for a perfectly reflecting mirror. However, in the case
α � ω′, we observe that

β
R,R
ω,ω′ ∼= α

2πki
√

ωω′ e−iω′/k

(
i
k

ω′

)iω/k+ 1
2




(
1

2
+ iω/k

)
, (33)

and using the identity
∣∣
(

1
2 + iω/k

)∣∣2 = π/cosh(πω/k) (cf [15]), we conclude that∣∣βR,R
ω,ω′

∣∣2 ∼= 1

2πkω

(
α

ω′

)2

(e2πω/k + 1)−1. (34)

Finally, a simple but rather cumbersome calculation yields the result∣∣βR,L
ω,ω′

∣∣2 ∼= 0, ω′ � α, (35)

and ∣∣βR,L
ω,ω′

∣∣2 ∼ 1

ωω′O
[(

α

ω′

)2
]

, α � ω′. (36)

Note that, in the case α � ω′ we indeed obtain the nice feature that the number of created
particles in the ω mode, together with the radiated energies, are both finite quantities
when u0 → ∞, in perfect agreement with the conclusions in [7]. More precisely, for a
partially transmitting mirror the number of produced particles in the ω mode, namely Nω, is
approximately

Nω
∼=

∫ ∞

0
dω′∣∣βR,R

ω,ω′
∣∣2

. (37)

In order to calculate this quantity, we split the domain [0,∞) into two disjoint sets, [0, k) and
[k,∞). In the second domain we can do the approximation (34), and we obtain∫ ∞

k

dω′∣∣βR,R
ω,ω′

∣∣2 ∼= 1

2πω

(
α

k

)2

(e2πω/k + 1)−1. (38)

In the other domain, assuming that k � 1, we have ω′ � 1 and thus for incident waves of
a very low frequency the mirror behaves like a perfect reflector; for this reason we can use
formula (11). Then, a simple calculation yields∫ k

0
dω′∣∣βR,R

ω,ω′
∣∣2 ∼ O

(
k2

ω(ω2 + k2)

)
, (39)

and, since k � 1, we conclude that the number of produced particles in the ω mode is
approximately

Nω
∼= 1

2πω

(
α

k

)2

(e2πω/k + 1)−1, (40)

and the radiated energy E ≡ ∫ ∞
0 dω h̄ωNω is, with good approximation,

E ∼= h̄α2

4π2k
ln 2. (41)

This completes the proof of all the statements above.

7
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4. Final comments

It is necessary to remark that there is a crucial difference with the case ω′ � α, where the
number of radiated particles in the ω mode diverges logarithmically with u0 → ∞. In this
situation the physically relevant quantity is the number of created particles in the ω mode per
unit time. This dimensionless quantity is finite and its value is given by [7, 8]

lim
u0→∞

1

u0
Nω = 1

2π
(e2πω/k − 1)−1. (42)

A second point is that we have started an additional calculation for a bidimensional
fermionic model with massless particles [19]. We have found that in this situation the reverse
change of statistics happens, namely the Fermi–Dirac statistics for the completely reflecting
case turns into the Bose–Einstein statistics for the partially reflecting, physical mirror.

To finish, note again the remarkable fact that the problem we addressed here could
be solved exactly, thus successfully completing a challenging program initiated by Barton,
Calogeracos and Nicolaevici [9–11] about 10 years ago. As a consequence, the results we have
obtained are absolutely solid—they do not hang on a perturbative expansion or approximation
of any sort.

The physical reason for this surprising change of statistics may be found in the fact that
the form of the spectrum is actually determined not through the statistics of the field but rather
by the specific trajectory of the mirror and by its interaction with the radiation field. A related,
albeit different, example of a phenomenon of this sort occurs in the case of an electric charge
following the same trajectory (1). When the radiation field has spin 1, the radiation emitted by
the charge obeys Bose–Einstein statistics, but when a scalar charge, and consequently a scalar
radiation field, is considered, the emitted radiation will obey the Fermi–Dirac statistics [18].

Finally, we must point out for completeness that another situation where a somehow
related feature occurs (but maybe of a different kind) is when measuring the spectrum of a
scalar field using a DeWitt detector [13, 14] which follows a uniformly accelerated world-line
in Minkowski space time. In this case, when the dimension of the space time is even, the
Bose–Einstein statistics is obtained, however when this dimension is odd the reverse change
of statistics, to the Fermi–Dirac one, takes place [20, 21].
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